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with specific stellar populations). Because merger counterparts
are predicted to be faint, obtaining a spectroscopic redshift
is challenging (cf. Rowlinson et al. 2010), in which case
spectroscopy of the host galaxy is the most promising means
of obtaining the event redshift.

It is important to distinguish two general strategies for con-
necting EM and GW events. One approach is to search for a
GW signal following an EM trigger, either in real time or at
a post-processing stage (e.g., Finn et al. 1999; Mohanty et al.
2004). This is particularly promising for counterparts predicted
to occur in temporal coincidence with the GW chirp, such as
short-duration gamma-ray bursts (SGRBs). Unfortunately, most
other promising counterparts (none of which have yet been
independently identified) occur hours to months after coales-
cence.6 Thus, the predicted arrival time of the GW signal will
remain uncertain, in which case the additional sensitivity gained
from this information is significantly reduced. For instance, if
the time of merger is known only to within an uncertainty of
∼ hours (weeks), as we will show is the case for optical (radio)
counterparts, then the number of trial GW templates that must
be searched is larger by a factor ∼104–106 than if the merger
time is known to within seconds, as in the case of SGRBs.

A second approach, which is the primary focus of this paper,
is EM follow-up of GW triggers. A potential advantage in this
case is that counterpart searches are restricted to the nearby
universe, as determined by the ALIGO/Virgo sensitivity range
(redshift z ! 0.05–0.1). On the other hand, the large error
regions are a significant challenge, which are estimated to be
tens of square degrees even for optimistic configurations of GW
detectors (e.g., Gürsel & Tinto 1989; Fairhurst 2009; Wen &
Chen 2010; Nissanke et al. 2011). Although it has been argued
that this difficulty may be alleviated if the search is restricted
to galaxies within 200 Mpc (Nuttall & Sutton 2010), we stress
that the number of galaxies with L " 0.1 L∗ (typical of SGRB
host galaxies; Berger 2009, 2011) within an expected GW error
region is ∼400, large enough to negate this advantage for most
search strategies. In principle the number of candidate galaxies
could be reduced if the distance can be constrained from the
GW signal; however, distance estimates for individual events
are rather uncertain, especially at that low of S/Ns that will
characterize most detections (Nissanke et al. 2010). Moreover,
current galaxy catalogs are incomplete within the ALIGO/Virgo
volume, especially at lower luminosities. Finally, some mergers
may also occur outside of their host galaxies (Berger 2010;
Kelley et al. 2010). Although restricting counterpart searches to
nearby galaxies is unlikely to reduce the number of telescope
pointings necessary in follow-up searches, it nevertheless can
substantially reduce the effective sky region to be searched,
thereby allowing for more effective vetoes of false positive
events (Kulkarni & Kasliwal 2009).

At the present there are no optical or radio facilities that can
provide all-sky coverage at a cadence and depth matched to
the expected light curves of EM counterparts. As we show in
this paper, even the Large Synoptic Survey Telescope (LSST),
with a planned all-sky cadence of four days and a depth of
r ≈ 24.7 mag, is unlikely to effectively capture the range of
expected EM counterparts. Thus, targeted follow-up of GW

6 Predicted EM counterparts that may instead precede the GW signal include
emission powered by the magnetosphere of the NS (e.g., Hansen & Lyutikov
2001; McWilliams & Levin 2011; Lyutikov 2011a, 2011b), or cracking of the
NS crust due to tidal interactions (e.g., Troja et al. 2010; Tsang et al. 2011),
during the final inspiral. However, given the current uncertainties in these
models, we do not discuss them further.
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Figure 1. Summary of potential electromagnetic counterparts of NS–NS/
NS–BH mergers discussed in this paper, as a function of the observer angle,
θobs. Following the merger a centrifugally supported disk (blue) remains around
the central compact object (usually a BH). Rapid accretion lasting !1 s
powers a collimated relativistic jet, which produces a short-duration gamma-
ray burst (Section 2). Due to relativistic beaming, the gamma-ray emission
is restricted to observers with θobs ! θj , the half-opening angle of the jet.
Non-thermal afterglow emission results from the interaction of the jet with
the surrounding circumburst medium (pink). Optical afterglow emission is
observable on timescales up to ∼ days–weeks by observers with viewing angles
of θobs ! 2θj (Section 3.1). Radio afterglow emission is observable from all
viewing angles (isotropic) once the jet decelerates to mildly relativistic speeds
on a timescale of weeks–months, and can also be produced on timescales of
years from sub-relativistic ejecta (Section 3.2). Short-lived isotropic optical
emission lasting ∼few days (kilonova; yellow) can also accompany the merger,
powered by the radioactive decay of heavy elements synthesized in the ejecta
(Section 4).
(A color version of this figure is available in the online journal.)

error regions is required, whether the aim is to detect optical
or radio counterparts. Even with this approach, the follow-
up observations will still require large field-of-view (FOV)
telescopes to cover tens of square degrees; targeted observations
of galaxies are unlikely to substantially reduce the large amount
of time to scan the full error region.

Our investigation of EM counterparts is organized as follows.
We begin by comparing various types of EM counterparts, each
illustrated by the schematic diagram in Figure 1. The first is an
SGRB, powered by accretion following the merger (Section 2).
Even if no SGRB is produced or detected, the merger may still
be accompanied by relativistic ejecta, which will power non-
thermal afterglow emission as it interacts with the surrounding
medium. In Section 3 we explore the properties of such “or-
phan afterglows” from bursts with jets nearly aligned toward
Earth (optical afterglows; Section 3.1) and for larger viewing
angles (late radio afterglows; Section 3.2). We constrain our
models using the existing observations of SGRB afterglows,
coupled with off-axis afterglow models. We also provide a re-
alistic assessment of the required observing time and achiev-
able depths in the optical and radio bands. In Section 4 we
consider isotropic optical transients powered by the radioac-
tive decay of heavy elements synthesized in the ejecta (referred
to here as “kilonovae,” since their peak luminosities are pre-
dicted to be roughly one thousand times brighter than those
of standard novae). In Section 5 we compare and contrast the
potential counterparts in the context of our four Cardinal Virtues.
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Motivation

GWs inform us about the 
central engine

EM informs us about 
location and environment
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Allows for a more 
sensitive search by 
focusing on a short 
period of data and a 
single sky location.
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LOOCUP
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Allows for possibility of 
imaging corresponding 
EM signals as they 
occur.
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Andromeda
Image from
Mazets et al, ApJ 680, 545 (2008)

LIGO observations ruled out an 
inspiral progenitor in M31 at 
>99% confidence.* They allow a 
soft gamma repeater (SGR) 
progenitor.†
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GRB 070201: A success story
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Use the time-delay between detector sites and the 
amplitude measured at each site to localize sources 
on the sky.

Sky localization



Typical Skymap



First Low-latency EM+GW Search
2009-2010

Abbott, et al, A&A 539, A124 (2012)
Abadie et al, A&A 541, A155 (2012)
Evans et al, ApJS 203, 28 (2012)



Commissioning Observing

Construction

aLIGO & aVirgo



In Pictures

Placing aLIGO Input/Output 
Vacuum Tubes

Welding the LIGO Livingston X-arm 
Input Test Mass to Fused Silica Fibers

aLIGO transmission Monitor and 
Arm Length Stabilization System 

AdV input optics suspended bench

AdV test mass ring heater 
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Figure 1: aLIGO (left) and AdV (right) target strain sensitivity as a function of frequency. The
average distance to which binary neutron star (BNS) signals could be seen is given in Mpc. Current
notions of the progression of sensitivity are given for early, middle, and late commissioning phases,
as well as the final design sensitivity target and the BNS-optimized sensitivity. While both dates
and sensitivity curves are subject to change, the overall progression represents our best current
estimates.

BNS ranges for the various stages of aLIGO and AdV expected evolution are also provided in Fig. 1.
The installation of aLIGO is well underway. The plan calls for three identical 4 km interfer-

ometers, referred to as H1, H2, and L1. In 2011, the LIGO Lab and IndIGO consortium in India
proposed installing one of the aLIGO Hanford detectors, H2, at a new observatory in India (LIGO-
India). As of early 2013 LIGO Laboratory has begun preparing the H2 interferometer for shipment
to India. Funding for the Indian portion of LIGO-India is in the final stages of consideration by
the Indian government.

The first aLIGO science run is expected in 2015. It will be of order three months in duration,
and will involve the H1 and L1 detectors (assuming H2 is placed in storage for LIGO-India). The
detectors will not be at full design sensitivity; we anticipate a possible BNS range of 40 – 80 Mpc.
Subsequent science runs will have increasing duration and sensitivity. We aim for a BNS range of
80 – 170 Mpc over 2016–18, with science runs of several months. Assuming that no unexpected
obstacles are encountered, the aLIGO detectors are expected to achieve a 200Mpc BNS range circa
2019. After the first observing runs, circa 2020, it might be desirable to optimize the detector
sensitivity for a specific class of astrophysical signals, such as BNSs. The BNS range may then
become 215 Mpc. The sensitivity for each of these stages is shown in Fig. 1.

Because of the planning for the installation of one of the LIGO detectors in India, the installation
of the H2 detector has been deferred. This detector will be reconfigured to be identical to H1 and
L1 and will be installed in India once the LIGO-India Observatory is complete. The final schedule
will be adopted once final funding approvals are granted. It is expected that the site development
would start in 2014, with installation of the detector beginning in 2018. Assuming no unexpected
problems, first runs are anticipated circa 2020 and design sensitivity at the same level as the H1
and L1 detectors is anticipated for no earlier than 2022.

The commissioning timeline for AdV [3] is still being defined, but it is anticipated that in
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2016-17 2017-18

2019+ 2022+
Figure 5: Network sensitivity and localization accuracy for face-on BNS systems with advanced
detector networks. The ellipses show 90% confidence localization areas, and the red crosses show
regions of the sky where the signal would not be confidently detected. The top two plots show the
localization expected for a BNS system at 80 Mpc by the HLV network in the 2016–17 run (left)
and 2017–18 run (right). The bottom two plots show the localization expected for a BNS system
at 160 Mpc by the HLV network in the 2019+ run (left) and by the HILV network in 2022+ with
all detectors at final design sensitivity (right). The inclusion of a fourth site in India provides good
localization over the whole sky.

Estimated EGW = 10�2M�c2 Number % BNS Localized
Run Burst Range (Mpc) BNS Range (Mpc) of BNS within

Epoch Duration LIGO Virgo LIGO Virgo Detections 5 deg2 20 deg2

2015 3 months 40 – 60 – 40 – 80 – 0.0004 – 3 – –
2016–17 6 months 60 – 75 20 – 40 80 – 120 20 – 60 0.006 – 20 2 5 – 12
2017–18 9 months 75 – 90 40 – 50 120 – 170 60 – 85 0.04 – 100 1 – 2 10 – 12
2019+ (per year) 105 40 – 70 200 65 – 130 0.2 – 200 3 – 8 8 – 28

2022+ (India) (per year) 105 80 200 130 0.4 – 400 17 48

Table 1: Summary of a plausible observing schedule, expected sensitivities, and source localization
with the advanced LIGO and Virgo detectors, which will be strongly dependent on the detectors’
commissioning progress. The burst ranges assume standard-candle emission of 10�2M�c2 in GWs
at 150 Hz and scale as E1/2

GW. The burst and binary neutron star (BNS) ranges and the BNS
localizations reflect the uncertainty in the detector noise spectra shown in Fig. 1. The BNS detection
numbers also account for the uncertainty in the BNS source rate density [27], and are computed
assuming a false alarm rate of 10�2 yr�1. Burst localizations are expected to be broadly similar
to those for BNS systems, but will vary depending on the signal bandwidth. Localization and
detection numbers assume an 80% duty cycle for each instrument.
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Evolution of Sky Localization 
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Looking Forward



What’s Next?

aLIGO project ~87% complete.  Includes most subsystem assembly, 
testing, and integration as well some of the more complex integrated 
testing (cf. Mike Landry’s talk).

aVirgo budget ~40% committed thus far.  Early commissioning to 
start next year.

On time for aLIGO observing run in 2015.  aVirgo to follow in 2016.

Discussions with the astronomy community regarding the details of 
future EM+GW searches and data sharing are underway.

The first direct detection of gravitational waves and the era of 
gravitational wave astronomy are on the way!


